Mathematics II

(English course)
Second semester, 2012/2013

Exercises (5)

1. Using the chain-rule, compute the following:
(a) $\frac{d f}{d t}$, with $f(x, y)=\frac{x+y}{1+y^{2}}, x=t \sin t, y=e^{t^{2}+1}$.
(b) $\frac{d w}{d t}$, with $w=\frac{x y+y}{x^{2}+y^{2}}, x=\operatorname{tg} t, y=e^{t}$.
(c) $\frac{d f}{d t}$, with $f(u, v)=\ln \left(u+v^{2}\right), u=\frac{x}{y}, v=x y, x=\frac{1}{t}, y=\frac{t}{t^{2}+1}$.
(d) $\nabla g(-1,2)$, with $g(x, y)=\frac{u e^{v}}{v^{2}+w^{2}}, u=\frac{x}{y}, v=x^{2}+y^{2}, w=x^{2}-y^{2}$.
(e) $\frac{\partial g}{\partial z}(0,1,-3)$, with $g(x, y, z)=\frac{(u-3 v)^{7}}{1+w^{4}}, u=x^{2}+3 x y, v=x y$, $w=(3 y+z)^{2}$.
2. Write the second-order Taylor formula for the following functions:
(a) $f(x, y)=\frac{x y}{x^{2}+y^{2}}$, at the point $(1,-1)$.
(b) $f(x, y)=\frac{(x+1) y}{x^{4}+2 y^{4}}$, at the point $(1,0)$.
(c) $f(x, y)=\ln \frac{x+y^{2}}{1+x y}$, at the point $(2,1)$.
3. Let $f: \mathbb{R}^{2} \mapsto \mathbb{R}$ be a twice continuously differentiable function, let $u: \mathbb{R}^{2} \mapsto \mathbb{R}^{2}$ be the function defined as

$$
u(r, t)=(r \cos t, r \sin t) .
$$

Show that the function $g=f \circ u$ satisfies the equality

$$
\left(\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}\right) \circ u=\frac{\partial^{2} g}{\partial r^{2}}+\frac{1}{r} \frac{\partial g}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} g}{\partial t^{2}}
$$

4. Consider a twice continuously differentiable function $f: \mathbb{R} \mapsto \mathbb{R}$, and let

$$
u(x, y)=f(x-\alpha y)+f(x+\alpha y)
$$

where α is a real constant.
Show that u solves the equation

$$
\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial y^{2}} .
$$

5. Consider a C_{2}-function, $f: \mathbb{R}^{2} \mapsto \mathbb{R}$, and let

$$
w=x f\left(x y, \frac{y}{x}\right) .
$$

(a) Show that

$$
x \frac{\partial w}{\partial x}+y \frac{\partial w}{\partial y}-w=2 x^{2} y \frac{\partial f}{\partial u}
$$

(b) Find $\frac{\partial^{2} w}{\partial y^{2}}$.
6. Consider a differentiable function $f: \mathbb{R}^{2} \mapsto \mathbb{R}$ such that

$$
\|\nabla f(x, y)\|=1, \quad \forall(x, y) \in \mathbb{R}^{2}
$$

and let $g(u, v)=f\left(2 u v, u^{2}-v^{2}\right)$,
(a) Show that

$$
\|\nabla g(u, v)\|^{2}=4\left(u^{2}+v^{2}\right), \quad \forall(u, v) \in \mathbb{R}^{2}
$$

(b) Assuming $\nabla f(2,0)=\left(\frac{3}{5}, \frac{-4}{5}\right)$, find $\nabla g(1,1)$.

